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PRECISION METHODS OF NONDESTRUCTIVE CONTROL OF THERMOPHYSICAL PROPERTIES 

V. P. Kozlov, V. S. Adamchik, and V. N. Lipovtsev UDC 536.21 

We examine original solutions for two-dimensional problems of nonsteady heat 
conduction in the case of an orthotropic half-space with discontinuous mixed 
boundary conditions; these are used to develop new'methods of controlling ther- 
mophysical properties in a nondestructive manner. 

One of the most important problems confronting experimental thermophysics is the eleva- 
tion of the accuracy and productivity of thermophysical measurements, convenience in their 
practical realization from a standpoint both of methodology and engineering. In comparison 
with many methods of determining thermophysical characteristics (TPC) in materials, greatest 
preference is presently given to nonsteady methods and means which ensure complex thermophy- 
sical measurements in various materials, without destruction of their natural structure and 
integrity (the so-called methods of means of nondestructive TPC control) [3-8]. The deci- 
sions of recent international and all-union thermophysical conferences on the properties of 
materials have recently stressed particular attention on the need for promising develop- 
ments in the attainment of nondestructive control of TPC. 

The proposed methods of nondestructive control (TPC) can be incorporated under the con- 
cept of precision methods, since the hypothetical boundary conditions are rather precise and 
can easily be achieved in actual practice. 

In the area of measurement techniques involving nonelectrical quantities, the concept 
of a precision instrument (device) is constantly accompanied by the concept of the pzecision 
method. The metrological aspect of the need to unify these concepts is felt most urgently 
in the techniques of thermophysical experimentation. The methodological error in the meas- 
urement of thermophysical properties is determined primarily by the extent of divergence be- 
tween theoretically postulated boundary conditions and those actually encountered in prac- 
tice. 

If the hypothetical boundary conditions are satisfied to a sufficient degree of ~ccura- 
cy during the course of a thermophysical experiment, we can render judgement as to the real 
accuracy of these thermophysical measurements, since only those that are associated with in- 
strumental error in the determination of the TPC will be dealt with in our analysis o~ the 
errors. However, methods of reducing these errors are widely known and involve the u:iliza- 
tion of perfected (precise) measurement capabilities to determine individual quantities in- 
cluded in the appropriate theoretical formulas for the determination of TPC. In the actual 
practice of thermophysical measurements, two forms of boundary conditions are most ea~ily 
realized: constancy of temperature at the surface of the test body; constancy of the heat 
flow, provided that the latter is generated by means of a low-inertia electric heater 
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Let us examine the following two-dimensional problem of nonsteady heat conduction: 
semibounded (orthotropic) body with a constant initial temperature T O = const is heated 
through a circular region (0 ~ r < R, z = 0) by a constant flow of heat with density q0. Be- 
yond the limits of this circular region (r > R, z = 0), over the entire range in which ex- 
change of heat takes place, a constant temperature is maintained, which is equal to the ini- 
tial temperature T 0 . We are called to find a solution for the following system of differen- 
tial equations for the functions r z, x) = O i = Ti(r, z, ~) - T0(0 g r < R, z > 0, < > 0) 
and O2(r, z, ~) = 02 = T2(r, z, x) - T0(r > R, z > O, �9 > 0): 

azo, 1 do ,  az azol 1 e e l  
arz + + - - = -  r Or a~ Oz z ar Ox 

O~O~ 1 OO~ az 0~0~ 1 OO~ 
Or 2 + -  _ _ - ] -  . . . . .  , r Or ar OZ z ar Ox 

unde r  t h e  f o l l o w i n g  boundary  c o n d i t i o n s :  

- - ,  0 < ~ r < R ;  (1)  

(2) R < r <  oo, 

O1 (r, z, O)= O,(r, z, O)= O, 

aO,(r, O, ~) 
= q* O<~r<R, z = 0 ,  "~:>0, 

OZ ~z ' 

O,(r, O, x)=O, r > R ,  z=O,  "r>O, 

00,(0, z, ~) =0, r = O, z > O, x > O, 
#r 

OOl(r, oo, ~) = aO,(r, oo, x) = ao,(oo, z, "0 = o, 
Oz Oz dr 

O~(R, z, . 0=O, (R,  z, x), z > 0 ,  .~>0,  

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) COl(R, z, ~) aO,(R, z, ~) 
= , z > 0 ,  x > 0 .  

Or Or 
In our subsequent studies we will be interested in finding a solution for 0 l(r, z, x) 

in the first region (0 ~ r < R, z _> 0, T > 0), which in the space of L images, with consider- 
ation of boundary conditions (3)-(9), can be written in the form 

( l/~z'z z V/ -  " arx~ '  ---~--) (i0) 
Ol(r, Z, s) = -  2qo'l/~z *~j exp s +  _ . .  X 

uX,s o arXZ 
s +  t~ '  

dx, O ~ r < R .  (___~ ) sin x - x cos x 
• do x 

x 

When ar = a~ = a, t r = t z  = ~, f rom (10)  we have  t h e  c o r r e s p o n d i n g  s o l u t i o n  f o r  an i s o t r o p i c  
( semibounded  in  t h e  t h e r m a l  s e n s e )  body w h i l e  as R ~ ~ f rom (10)  we have  t h e  f a m i l i a r  [1] 
o n e - d i m e n s i o n a l  ' s o l u t i o n  f o r  t h e  semibounded  i s o t r o p i c  medium h e a t e d  by t h e  c o n s t a n t  h e a t  
flow of density qo" 

Applying the inverse Laplace transform to (10), we obtain 

i (___~_ ) s i n x - x c ~  qoR Jo x • O~(r, z, ~)= u~,VR-~ x~ 

• exp --'-R-- 2 ] / a ~  -R- 

- -  exp "l/K--~x erfc 2 "l/a--~ + R- 

2 Va-~ 

At the axis r = 0 (z, �9 -> O) solution (ii) assumes the form 

01(0, z, 'r,) = 2qo l / ~  { ( z ~ ) err ( 
b~ "l/~" exp 4a;r , 

Z 

~ err ~ 
"V~-h~zx arctg z'l /~-~ 2 o 

(11) 

(12) 

Rx ) exp ( _  x~) dx]}. 
~V~-~ 
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The excess temperature at the center of the heating spot (r = z = 0) at the suzface of 
this (orthotropic) body is determined from the following expression: 

Oz(O, O, ,r) - 2qo]/~ ( R ) bz'V'~- err 2 Va-~ " (13) 

In the steady thermal regime (~ ~ ~) solution (Ii) exhibits an analytical extension in- 
to the second region r > R. Thus, for any point r and z (0 <- r < ~, 0 ~ z < =) as ~ + =, we 
have 

2qoR i RZ ]/-K-$ax) J ( i  ! sinx--xc~ dx, i= l ,  2 . o  x, x z (14) (r, z,  oo) =  x 'V-RT  o 

If K~ = i, then from (14) we confined the corresponding steady-state solution for the 
isotropic half-space heated through the circular region (0 ~ r < R, z = 0) by a constant 
flow of heat, with the temperature T O kept constant outside of the circle (r > R, z = 0) at 
the boundary of this body [2]. 

When z = 0, from (14) we have a value (distribution) for the steady temperature at the 
surface of the orthotropic half-space in the area of the circular heating spot (0 ~ : ~ ~): 

l /  " 2q~ 1 r ~.~ R; (15) 
O (r, o, oo) = R 

O, r ~ R .  
For the steady-state value of the excess temperature (14) at the axis r = 0 (z ;: 0) we 

have 

0x(0, z, oo)= nZzV ~ ~ zVKaa " (16) 

According to (15) and (16), the steady-state value of the excess temperature at the cen- 
tral point (r = z = 0) of the circulating spot assumes the following simple form: 

2qoR (17 )  %.(o, o, = 

Using (14), it is not difficult to find the ratio between the heat-flux density s • 
[80i(r, 0, ~)/8z] = q*(r) at any point on the boundary surface z = 0, r ~ 0 to the given 
heat-flux density q0 = const in the circle region (0 i r < R, z = 0)= 

q*(r) I = 
qo z=0 

- -  !, r < R ;  

 r=sin 7) J' r > 
(is) 

Relationship (18) is represented in Fig. i. On the basis of this representation, which 
characterizes the behavior of the discontinuous (generated) heat-flux function, where the 
flow of heat is directed normally to the boundary of the surface (z = 0) of the body being 
examined. From the standpoint of actual practice we can draw the following important conclu- 
sion with regard to the extent to which the flow of heat is reduced in intensity in the cool- 
ing region (r > R, z = 0), i.e., in the region at which the temperature T o is kept cor~stant 
(at the surface of the body, i.e., z = 0, r > R). These conclusions may find application in 
various branches of science and engineering; among these we might include an optimum choice 
for the dimensions of bodies being studied under the experimental techniques of thermcphy- 
sics, proceeding from a given measurement accuracy with regard to thermophysical characteris- 
tics. 

On the basis of the above analytical material, we propose original calculation formulas 
for the determination of the thermophysical properties of orthotropic materials (without des- 
troying their integrity), provided that the theoretically postulated boundary conditions 
(3)-(9) are realized as part of the technique of the thermophysical experiment: 
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Fig. i. Distribution of heat-flux density, 
normal to the heating surface (z = 0) as a 
ratio of the given q0 in the circular re- 
gion (0 ~ r < R, z = 0), as a function of 
the relative radius r/R in the steady- 
state thermal regime [relationship (18)]. 

q'(pJ _/I I 
q0 

i. Calculation of the Coefficient of Thermal Activity b z = lz/az 

(ar~/R 2 < 0.i) we have 

b, = 2q~ 
o~ (o, o, ~) V ~  " 

�9 From ( 1 3 )  as z + 0 

(19) 

2. Determination of the Coefficient of Thermal Diffusivity ar �9 

2.1 With known values for bz, we determine the coefficient ar from the equation 

r = err (X), ( 2 0 )  

where 
r .... o, (0, 0, ~) b, V~ 

2qo I/7 - '  ( 21 ) 

X = R ( 2 2 )  
2 V a ; ~  " 

From t h e  e x p e r i m e n t a l l y  d e r i v e d  v a l u e s  o f  Y, u s i n g  ( 2 0 ) ,  we f i n d  t h e  v a l u e  o f  t h e  a r g u -  
ment  X. Then  

hn 
a.  = ~ ( 2 3 )  4xX~ 

2.2. With the values of b z unknown, the coefficient ar is determined from the equation 

N= O1(0' 0' xl) err(- 1 ) _ =  2 ]/Fo--~ 1 ( 2 4 )  

1 ' ']/~- ' 
01(0, O, k'q) e r r ( 2  .Vk__F._~I ) 

where k = ~2[~: represents the number of measurements in the ratio (24)specified in ad- 
vance. 

From the experimentally derived values of N, using (24), we find the value of the Fo: 
number. In this case 

Rz 
aT . . . .  Fo 1. ( 25 ) 

"171 

Determination of the Complex Zz VK-~ = Xdq/ K-~= Xr/V-K-~= cyq/~za~ = ]/~ = bz ]l-d7 = 3. 

br V ~ .  
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From (15) we have 

or when r = 0 

2qoR V / r 2 
V R ? =   Ol(r, o, oo) 1 

2qoR 
~01 (0, O, oo) 

4. 
(16), is found from the transcendental equation 

Determination of the Parameter K= = a~/az = K% = lr/%z. 

arctg X = AX, 
where 

A = I - -  0~(0, z, ~ )  
01(0, O, oo) 

R 
X ~ - -  

Equat ion  (28) always has r o o t s ,  s i n c e  A < 1. 
following formula that 

, z>0, 

o r  

(26) 

(27) 

The parameter K a, using 

(28) 

(29) 

(30) 

Having determined x, Ka we find ~rom the 

V-R-f.= Rlz, ( 3 i )  
X 

K, = (32) 

The thermal conductivity %z for known K.a is found from (27), while the thermal diffus- 
ivity az is found from the formula 

a~ 

K~ (33) 

We calculate the volumetric heat capacity c~ by means of the following formula 

1 2qoR (34) 

I f  the  body i s  i s o t r o p i c  (K~ = 1) ,  then the  complex d e t e r m i n a t i o n  of  the  TPC (p roceed -  
ing from the solution of this problem) can be obtained without distroying the integrity of 
the material being studied, provided that we use the exact formulas (24) and (27), since in 
this case b = ~/~ , a cy = %. 

The complex determination of the TPC of an orthotropic body (without destroying the in- 
tegrity of the test material) can be achieved in actual practice by using a combinati)n ex- 
perimental method. Essentially this involves the following: if the test material exhibits 
a finite dimension h in the direction of the z axis and a constant temperature equal to T o 
is maintained at the z = h surface, and if in the place of condition (5) we establish the 
condition of ideal thermal insulation, then on the basis of the solution of the corre;~pond- 
ing heat-conduction problem, the sort parameter Ka can be determined in the steady state 
from the following equation: 

4 ~o 1K1[~(2n+l) J [  n(2n+l)T] (35) 

4 l _ _ i _ _ K  1 
n----O 

where N: = [T(r, 0, ~) - ToJ/[T(0, 0, ~) - T O ] is the experimentally established ratio of ex- 
cess temperatures at the points r = r, z = 0 and r = z = 0 in the steady regime; ~ = ~/R; 

= h/R. 

A d d i t i o n a l l y ,  in the  s t e a d y - s t a t e ,  f o r  a p lane  o r t h o t r o p i c  l a y e r  of  t h i c k n e s s  h, hea ted  
by a circular source of constant-power heat, we have the theoretical formula for the deter- 
mination of the coefficient of thermal conductivity %z: 
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n(2n -{- 1) ] 
Xz = qoh {I 4 ~" K~ -2~-~ }. (36) 

T(O, O, oo)--T o ~hVR-a-a ~'--o ~nT7 

Thus, on the basis of the derived solution and the analytical studies which we carried out 
into this two-dimensional problem of nonsteady heat conduction in the presence of mixed dis- 
continuous boundary conditions of the first and second kind, we propose new calculation for- 
mulas for the complex determination of the TPC of isotropic and orthotropic materials, using 
as our basis the physical model of the half-space and an unbounded plate. The determination 
of all of the thermophysical parameters for the objects being investigated is possible with- 
out destruction of their integrity, i.e., all of the necessary calculations of the TPC para- 
meters can be carried out in accordance with the results fromcorresponding temperature meas- 
urements exclusively at the boundary surface (z = 0) of the media being considered. The pro- 
posed methods of nondestructive TPC control might serve as an analytical basis (mathematical 
foundation) for the design of contemporary microprocessor measuring facilities (systems) in 
the construction of thermophysical instrumentation. 

NOTATION 

8i(r, z, T) = Ti(r, z, ~) - To, excess temperature of the material being examined, in 
the i-th region; To, initial temperature; R, radius of circular source; ~ = h/R, relative 
height (thickness) of unbounded plates; r, z, ~, cylindrical coordinates and time; s, La- 
place transform parameter; ar , a~ , lr, Xz, br, bz, respectively, the thermal diffusivity, 
thermal conductivity, and thermal activity in the direction of the coordinates r and z; b i = 
Xi/ ~ ; q0, heat-flux density (W/m2); J0(x), Kl(X), respectively, Bessel function of zero- 
th order for the real argument and the MacDonald first-order function; err(x), probability 
integral; q*(r), heat-flux density, normal to the boundary heating surface, as a function of 
the point r (z = 0); N, Y, A, experimentally measured parameters; k = ~2/<1, measurement re- 
petition multiple; Ka = adar = K h = Xr/Xz, relationships between the thermophysical proper- 
ties in an orthotropic body. 
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